
CSE DEPARTMENT, NCERC PAMPADY Page 1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC “A” Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(2019-SCHEME)

COURSE MATERIALS

CST 305 SYSTEM SOFTWARE

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically competent

citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research

scientists and intellectual leaders of the country who can spread the beams of light and happiness among

the poor and the underprivileged.

CSE DEPARTMENT, NCERC PAMPADY Page 2

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering professionals

to facilitate continuous technological advancement.

DEPARTMENT MISSION

 To Impart Quality Education by creative Teaching Learning Process.

 To promote cutting-edge Research and Development Process to solve real world problems with

emerging technologies.

 To Inculcate Entrepreneurship Skills among Students.

 To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering

through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software Packages,

Web Services, System Tools and Components as per needs and specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment by

learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,

Teamworkand leadership qualities.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

CSE DEPARTMENT, NCERC PAMPADY Page 3

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-time

Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality

System Software Tools and Efficient Web Design Models with a focus on performance optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create innovative

career path and for the socially relevant issues.

COURSE OUTCOMES

SUBJECT CODE: C303

COURSE OUTCOMES

C303.1 K4 Identify and classify different software into different categories.

C303.2 K6 Design, analyze and implement two pass assembler

C303.3 K6 Design, analyze and implement one pass and multi pass assembler.

C303.4 K6 Design, analyze and implement linkers and loaders

C303.5
K6 Design, analyze and implement macro processors And to critique the

features of modern editing /debugging tools.

CSE DEPARTMENT, NCERC PAMPADY Page 4

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES
CO Vs PO’S Mapping

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C303.1 3 - - - - - - - - - - 2

C303.2 3 3 3 2 - - - - - - - 2

C303.3 3 3 3 2 - - - - - - - 2

C303.4 3 3 3 - - - - - - - - 2

C303.5 3 3 3 - - - - - - - - 2

C303 3 3 3 2 - - - - - - - 2

CO PSO’S Mapping

CO’S PSO1 PSO2 PSO3

C303.1 3 - -

C303.2 3 2 -

C303.3 3 2 -

C303.4 3 2 -

C303.5 3 2 -

C303 3 2 -

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

CSE DEPARTMENT, NCERC PAMPADY Page 5

SYLLABUS

CSE DEPARTMENT, NCERC PAMPADY Page 6

CSE DEPARTMENT, NCERC PAMPADY Page 7

CSE DEPARTMENT, NCERC PAMPADY Page 8

QUESTION BANK

MODULE I
 QUESTIONS CO KL

1 Define the Functions of an Assembler CO1 K1

2 List any Four Addressing modes of SIC/XE CO1 K1

3 Summarize the instruction formats used in SIC CO1 K2

4 Write the sequence of instructions for SIC/XE to

divide BETA by GAMA and to store integer quotient

in ALPHA reminder in DELTA

CO1 K5

5 Illustrate the SIC/XE architecture, Explaining in detail
data and instruction formats.

CO1 K3

6 Describe the format of Object Program generated by
the Two Pass SIC Assembler Algorithm

CO1 K2

7 Summarize debugger, text editor and device driver. CO1 K2

8 Illustrate the SIC architecture in detail. CO1 K3

9 Differentiate System software and application
software.

CO1 K4

10 Summarize the instruction formats used in SIC/XE CO1 K2

11 Discuss the SIC/XE memory, registers, data and
instruction formats and addressing modes

CO1 K2

12 Let NUMBERS be an array of 100 words. Write a

sequence of instructions for SIC and SIC/XE to set all

100 elements of the array to 1.

CO1 K5

MODULE II
1. Define the Functions of an Assembler CO2 K1

2. Describe Program Relocation CO2 K2

3. List Assembler directives in SIC CO2 K1

4. Give the Algorithm for Pass1 of two Pass SIC
Assembler

CO2 K2

5. Describe the format of Object Program generated by
the Two Pass SIC Assembler Algorithm

CO2 K2

6. Give the use of SYMTAB and OPTAB CO2 K2

CSE DEPARTMENT, NCERC PAMPADY Page 9

7 Explain the Algorithm for Pass2 of SIC Assembler CO2 K5

MODULE III
1 Define Literals. CO3 K1

2 With example, write notes on program blocks. CO3 K2

3 Summarize Symbol defining statements in assemblers. CO3 K2

4 Give the purpose of EXTREF and EXTDEF
assembler directives

CO3 K2

5 Write short notes on MASM Assembler CO3 K2

6 Give the structure and purpose of Modification record
and Define record

CO3 K2

7 Explain the concept of single pass assembler with
suitable example

CO3 K5

8 Illustrate control sections and program blocks CO3 K3

9 Explain in detail about Control section and its
different records .

CO3 K5

10 Explain in detail assembler independent features-
literals, symbol defining statements and expressions.

CO3 K2

11 Differentiate control sections and program blocks in
detail and also point out the assembler directives

CO3 K4

12 Explain the external reference handling of an
assembler

CO3 K5

13 Define forward reference. Illustrate the forward
reference handling by a single pass assembler.

CO3 K1&K3

MODULE IV
1 Point out Relocation , Linking and Loading. CO4 K4

2 Write notes on different loader design options CO4 K3

3 State and explain two pass algorithm for a linking
loader.

CO4 K5

4 Write short note on dynamic linking CO4 K3

5 Explain detail about machine dependent features of
loader.

CO4 K2

6 State and explain pass one algorithm for a linking
loader

CO4 K5

7 Write notes in detail about program linking. CO4 K3

8 Explain with example dynamic linking and automatic
library search.

CO4 K2

CSE DEPARTMENT, NCERC PAMPADY Page 10

9 List and explain different loader options CO4 K1 & K2

MODULE V
1 Illustrate about recursive macro expansion. CO5 K3

2 Design an iterative algorithm for a one pass macro
processor

CO5 K5

3 Differentiate between a macro and a subroutine.

Illustrate macro definition and expansion using an
example.

CO5 K4

4 Illustrate about recursive macro expansion. CO5 K3

5 Write note on conditional macro expansion. CO5 K3

6 Illustrate the data structure required for a macro
processor algorithm and explain the format of each.

CO5 K3

7 Illustrate about macro definion and expansion CO5 K3

8 Explain keyword macro parameters and how unique

label generated in a macro
expansion.

CO5 K5

9 Explain the macro processor algorithm CO5 K5

10 Differentiate between character and block device

drivers.

CO5 K4

11 Explain the structure of text editor with the help of a
diagram.

CO5 K5

12 Discuss about device drivers with neat sketch. CO5 K2

13 Explain about debugging and different debugging
techniques.

CO5 K5

14 Differentiate Text editor and debugger CO5 K4

15 Explain the design of driver with diagrammatic
representation.

CO5 K5

16 Describe the function and capabilities of interactive
debugging system.

CO5 K5

17 Explain different debugging methods in detail. What is
a debugger?

CO5 K5

CSE DEPARTMENT, NCERC PAMPADY Page 11

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

SL NO TOPIC

1 commands used in VI text editors.

2 Detailed study of structure and record formats of DLL.

CSE DEPARTMENT, NCERC PAMPADY Page 12

MODULE NOTES

CONTENT BEYOND THE SYLLABUS

Elaborate commands used in VI text editors.

There are many ways to edit files in Unix. Editing files using the screen-oriented text

editor vi is one of the best ways. This editor enables you to edit lines in context with

other lines in the file.

An improved version of the vi editor which is called the VIM has also been made

available now. Here, VIM stands for Vi IMproved.

vi is generally considered the de facto standard in Unix editors because −

 It's usually available on all the flavors of Unix system.

 Its implementations are very similar across the board.

 It requires very few resources.

 It is more user-friendly than other editors such as the ed or the ex.

You can use the vi editor to edit an existing file or to create a new file from scratch.

You can also use this editor to just read a text file.

Starting the vi Editor
The following table lists out the basic commands to use the vi editor −

Sr.No. Command & Description

1 vi filename

Creates a new file if it already does not exist, otherwise opens an existing file.

2 vi -R filename

Opens an existing file in the read-only mode.

3 view filename

Opens an existing file in the read-only mode.

Following is an example to create a new file testfile if it already does not exist in the current

working directory −

|

~

~

~

~

~

~

~

~

~

~

~

~

"testfile" [New File]

The above command will generate the following output −

You will notice a tilde (~) on each line following the cursor. A tilde represents an unused line. If a

line does not begin with a tilde and appears to be blank, there is a space, tab, newline, or some other

non-viewable character present.

You now have one open file to start working on. Before proceeding further, let us understand a few

important concepts.

Operation Modes

While working with the vi editor, we usually come across the following two modes −

 Command mode − This mode enables you to perform administrative tasks such as saving

the files, executing the commands, moving the cursor, cutting (yanking) and pasting the

lines or words, as well as finding and replacing. In this mode, whatever you type is

interpreted as a command.

 Insert mode − This mode enables you to insert text into the file. Everything that's typed in

this mode is interpreted as input and placed in the file.

vi always starts in the command mode. To enter text, you must be in the insert mode for which

simply type i. To come out of the insert mode, press the Esc key, which will take you back to the

command mode.

Hint − If you are not sure which mode you are in, press the Esc key twice; this will take you to the

command mode. You open a file using the vi editor. Start by typing some characters and then come

to the command mode to understand the difference.

$vi testfile

Detailed study of structure and record formats of DLL.

Dynamic Link Library (DLL) is Microsoft's implementation of the shared library concept. A DLL

file contains code and data that can be used by multiple programs at the same time, hence it

promotes code reuse and modularization. This brief tutorial provides an overview of Windows DLL

along with its usage.

Dynamic linking is a mechanism that links applications to libraries at run time. The libraries remain

in their own files and are not copied into the executable files of the applications. DLLs link to an

application when the application is run, rather than when it is created. DLLs may contain links to

other DLLs.

Many times, DLLs are placed in files with different extensions such as .exe, .drv or .dll.

Advantages of DLL
Given below are a few advantages of having DLL files.

Uses fewer resources

DLL files don't get loaded into the RAM together with the main program; they don't occupy space

unless required. When a DLL file is needed, it is loaded and run. For example, as long as a user of

Microsoft Word is editing a document, the printer DLL file is not required in RAM. If the user

decides to print the document, then the Word application causes the printer DLL file to be loaded

and run.

Promotes modular architecture

A DLL helps promote developing modular programs. It helps you develop large programs that

require multiple language versions or a program that requires modular architecture. An example of

a modular program is an accounting program having many modules that can be dynamically loaded

at run-time.

Aid easy deployment and installation

When a function within a DLL needs an update or a fix, the deployment and installation of the DLL

does not require the program to be relinked with the DLL. Additionally, if multiple programs use

the same DLL, then all of them get benefited from the update or the fix. This issue may occur more

frequently when you use a third-party DLL that is regularly updated or fixed.

Applications and DLLs can link to other DLLs automatically, if the DLL linkage is specified in the

IMPORTS section of the module definition file as a part of the compile. Else, you can explicitly

load them using the Windows LoadLibrary function.

Important DLL Files
Mentioned below are some important dll files which user should know for programming −

 COMDLG32.DLL − Controls the dialog boxes.

 GDI32.DLL − Contains numerous functions for drawing graphics, displaying text, and managing fonts.

 KERNEL32.DLL − Contains hundreds of functions for the management of memory and various

processes.

 USER32.DLL − Contains numerous user interface functions. Involved in the creation of program

windows and their interactions with each other.

Types of DLLs
When you load a DLL in an application, two methods of linking let you call the exported DLL

functions. The two methods of linking are −

 load-time dynamic linking, and

 run-time dynamic linking.

Load-time dynamic linking

In load-time dynamic linking, an application makes explicit calls to the exported DLL functions

like local functions. To use load-time dynamic linking, provide a header (.h) file and an import

library (.lib) file, when you compile and link the application. When you do this, the linker will

provide the system with the information that is required to load the DLL and resolve the exported

DLL function locations at load time.

Runtime dynamic linking

In runtime dynamic linking, an application calls either the LoadLibrary function or the

LoadLibraryEx function to load the DLL at runtime. After the DLL is successfully loaded, you use

the GetProcAddress function, to obtain the address of the exported DLL function that you want to

call. When you use runtime dynamic linking, you do not need an import library file.

The following list describes the application criteria for choosing between load-time dynamic linking

and runtime dynamic linking −

 Startup performance − If the initial startup performance of the application is important, you should use

run-time dynamic linking.

 Ease of use − In load-time dynamic linking, the exported DLL functions are like local functions. It helps

you call these functions easily.

BOOL APIENTRY DllMain(

HANDLE hModule, // Handle to DLL module

DWORD ul_reason_for_call,

LPVOID lpReserved) // Reserved

{

switch (ul_reason_for_call)

{

case DLL_PROCESS_ATTACHED:

// A process is loading the DLL. break;

case DLL_THREAD_ATTACHED:

// A process is creating a new thread.

break;

case DLL_THREAD_DETACH:

// A thread exits normally.

break;

case DLL_PROCESS_DETACH:

// A process unloads the DLL.

break;

 Application logic − In runtime dynamic linking, an application can branch to load different modules as

required. This is important when you develop multiple-language versions.

The DLL Entry Point
When you create a DLL, you can optionally specify an entry point function. The entry point

function is called when processes or threads attach themselves to the DLL or detach themselves

from the DLL. You can use the entry point function to initialize or destroy data structures as

required by the DLL.

Additionally, if the application is multithreaded, you can use thread local storage (TLS) to allocate

memory that is private to each thread in the entry point function. The following code is an example

of the DLL entry point function.

When the entry point function returns a FALSE value, the application will not start if you are using

load-time dynamic linking. If you are using runtime dynamic linking, only the individual DLL will

not load.

The entry point function should only perform simple initialization tasks and should not call any

other DLL loading or termination functions. For example, in the entry point function, you should

not directly or indirectly call the LoadLibrary function or the LoadLibraryEx function.

Additionally, you should not call the FreeLibrary function when the process is terminating.

} return TRUE;

}

